AQP5 is differentially regulated in astrocytes during metabolic and traumatic injuries.

نویسندگان

  • Rui Chao Chai
  • Jiao Hua Jiang
  • Ann Yuen Kwan Wong
  • Feng Jiang
  • Kai Gao
  • Greg Vatcher
  • Albert Cheung Hoi Yu
چکیده

Water movement plays vital roles in both physiological and pathological conditions in the brain. Astrocytes are responsible for regulating this water movement and are the major contributors to brain edema in pathological conditions. Aquaporins (AQPs) in astrocytes play critical roles in the regulation of water movement in the brain. AQP1, 3, 4, 5, 8, and 9 have been reported in the brain. Compared with AQP1, 4, and 9, AQP3, 5, and 8 are less studied. Among the lesser known AQPs, AQP5, which has multiple functions identified outside the central nervous system, is also indicated to be involved in hypoxia injury in astrocytes. In our study, AQP5 expression could be detected both in primary cultures of astrocytes and neurons, and AQP5 expression in astrocytes was confirmed in 1- to 4-week old primary cultures of astrocytes. AQP5 was localized on the cytoplasmic membrane and in the cytoplasm of astrocytes. AQP5 expression was downregulated during ischemia treatment and upregulated after scratch-wound injury, which was also confirmed in a middle cerebral artery occlusion model and a stab-wound injury model in vivo. The AQP5 increased after scratch injury was polarized to the migrating processes and cytoplasmic membrane of astrocytes in the leading edge of the scratch-wound, and AQP5 over-expression facilitated astrocyte process elongation after scratch injury. Taken together, these results indicate that AQP5 might be an important water channel in astrocytes that is differentially expressed during various brain injuries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome Analysis of Gene Expression Provides New Insights into the Effect of Mild Therapeutic Hypothermia on Primary Human Cortical Astrocytes Cultured under Hypoxia

Hypothermia is increasingly used as a therapeutic measure to treat brain injury. However, the cellular mechanisms underpinning its actions are complex and are not yet fully elucidated. Astrocytes are the most abundant cell type in the brain and are likely to play a critical role. In this study, transcriptional changes and the protein expression profile of human primary cortical astrocytes cultu...

متن کامل

Protection by Neuroglobin Expression in Brain Pathologies

Astrocytes play an important role in physiological, metabolic, and structural functions, and when impaired, they can be involved in various pathologies including Alzheimer, focal ischemic stroke, and traumatic brain injury. These disorders involve an imbalance in the blood flow and nutrients such as glucose and lactate, leading to biochemical and molecular changes that cause neuronal damage, wh...

متن کامل

Hyperosmolar mannitol simulates expression of aquaporins 4 and 9 through a p38 mitogen-activated protein kinase-dependent pathway in rat astrocytes.

The membrane pore proteins, aquaporins (AQPs), facilitate the osmotically driven passage of water and, in some instances, small solutes. Under hyperosmotic conditions, the expression of some AQPs changes, and some studies have shown that the expression of AQP1 and AQP5 is regulated by MAPKs. However, the mechanisms regulating the expression of AQP4 and AQP9 induced by hyperosmotic stress are po...

متن کامل

Military Personnel with Chronic Symptoms Following Blast Traumatic Brain Injury Have Differential Expression of Neuronal Recovery and Epidermal Growth Factor Receptor Genes

OBJECTIVE Approximately one-quarter of military personnel who deployed to combat stations sustained one or more blast-related, closed-head injuries. Blast injuries result from the detonation of an explosive device. The mechanisms associated with blast exposure that give rise to traumatic brain injury (TBI), and place military personnel at high risk for chronic symptoms of post-concussive disord...

متن کامل

Endocannabinoids in cerebrovascular regulation.

The cerebral blood flow is tightly regulated by myogenic, endothelial, metabolic, and neural mechanisms under physiological conditions, and a large body of recent evidence indicates that inflammatory pathways have a major influence on the cerebral blood perfusion in certain central nervous system disorders, like hemorrhagic and ischemic stroke, traumatic brain injury, and vascular dementia. All...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Glia

دوره 61 10  شماره 

صفحات  -

تاریخ انتشار 2013